Back to Mathematics Village

Showing posts with label Real Number MCQs. Show all posts
Showing posts with label Real Number MCQs. Show all posts

Real Number MCQs

Real Number
Xth Mathematics

 MULTIPLE CHOICE QUESTIONS

  1   Euclid’s division algorithm can be applied to :
       (a) only positive integers
       (b) only negative integers
       (c) all integers
       (d) all integers except 0.

   2.   For some integer m, every even integer is of the form :
      (a)
      (b) m + 1
      (c) 2
      (d) 2m + 1
  3.   If the HCF of 65 and 117 is expressible in the form 65m – 117, then the value of m is :
      (a) 1 
      (b) 2
      (c) 3 
      (d) 4
  4.  If two positive integers p and q can be expressed as p = ab2 and q = a3b, a; b being prime numbers, then LCM (p, q) is :
      (a) ab 
      (b) a2b2 
      (c) a3b2 
      (d) a3b3
  5. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is :
     (a) 10 
     (b) 100 
     (c) 504 
     (d) 2520
  6.  7 × 11 × 13 × 15 + 15 is :
     (a) composite number
     (b) prime number
     (c) neither composite nor prime
     (d) none of these
  7. 1.2348 is :
    (a) an integer 
    (b) an irrational number 
    (c) a rational number 
    (d) none of these
  8. 2.35 is :
    (a) a terminating decimal
    (b) a rational number
    (c) an irrational number
    (d) both (a) and (c)
  9. 3.24636363... is :
    (a) a terminating decimal number
    (b) a non-terminating repeating decimal number
    (c) a rational number
    (d) both (b) and (c)
  10. For some integer q, every odd integer is of the form :
    (a) 2
    (b) 2q +
    (c)
    (d) q + 1
  11. If the HCF of 85 and 153 is expressible in the form 85m – 153, then the value of m is :
    (a) 1 
    (b) 4 
     (c) 3 
     (d) 2
  12. The decimal expansion of the rational number 47 / 22.5. will terminate after :
     (a) one decimal place 
     (b) three decimal places
     (c) two decimal places
     (d) more than 3 decimal places

13. If two positive integers p and q can be expressed as p = ab2 and q = a2b; a, b being prime numbers, then LCM (p, q) is :
 (a) ab 
(b) a2b2 
(c) a3b2 
(b) a3b3
14. Euclid’s division lemma states that for two positive integers a and b, there exist unique integers q and r such that a = bq + r, where :
(a) 0 < r
(b) 1 < r < b 
(c) 0 < r < b 
(d) 0 ≤ r < b
15. Following are the steps in finding the GCD of 21 and 333 :
      333 = 21 × m + 18
      21 = 18 × 1 + 3
      n = 3 × 6 + 0
     The integers m and n are :
(a) m = 15, n = 15 
(b) m = 15, n = 18 
(c) m = 15, n = 16 
(d) m = 18, n = 15
16. HCF and LCM of a and b are 19 and 152 respectively. If a = 38, then b is equal to :
      (a) 152 
      (b) 19 
      (c) 38 
      (d) 76
17. (n + 1)2 – 1 is divisible by 8, if n is :
      (a) an odd integer 
      (b) an even integer
      (c) a natural number 
      (d) an integer
18. The largest number which divides 71 and 126, leaving remainders 6 and 9 respectively is :
(a) 1750 
(b) 13 
(c) 65 
(d) 875
19. If two integers a and b are written as a = x3y2 and b = xy4; x, y are prime numbers, then H.C.F. (a, b) is :
(a) x3y3 
(b) x2y2 
(c) xy 
(d) xy2
20. The decimal expansion of the rational number 145171250 will terminate after :
(a) 4 decimal places
(b) 3 decimal places
(c) 2 decimal places
(d) 1 decimal place